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Finite strain and rotation from fault-slip data 
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Abstract--The moment tensor summation (MTS) characterizes the infinitesimal strain of a region due to fault 
rupture during an earthquake. Tectonic strain on a much longer time scale can be found by applying the MTS to 
fault-slip data, which represent cumulative fault displacement. However, the traditional MTS assumes infinitesi- 
mal strain, which may not be appropriate for cumulative displacement on faults. Therefore, it is necessary to 
examine whether a finite strain treatment is more appropriate. We develop a method to find finite strain from 
fault-slip data (FSFS) and use it to illuminate two general faulting problems: finite strain and block rotation. 

First, the FSFS method is compared to the MTS using both synthetic and real fault data. Strain due to faults 
must be high (> 60% elongation) before the infinitesimal strain approximation produces errors greater than the 
variation of typical field data. However, some regions do exhibit very high fault strains and require finite strain 
analysis. 

Second, the FSFS method is used to solve for rotation in regions cut by domino-style faults, a common model 
for high fault strains and rotation. Given an arbitrary rigid boundary, the method can be used to relate fault strain 
and block rotation. For example, a paleomagnetic rotation of 40 ° requires fault strain with a minimum finite 
elongation of 41%. 

INTRODUCTION 

DISPLACEMENT along faults is the primary manifestation 
of upper crustal deformation in active orogenic belts. 
Therefore, fault-slip data must be analyzed to quantify 
strain magnitude and orientation. A planar fault can be 
characterized by three elements: the unit vector normal 
to the fault plane; the unit vector parallel to the direction 
of accumulated slip; and the scalar value of average fault 
displacement. The collection of these data in the field is 
often difficult, but allows one to characterize the strain 
magnitude and orientation of a region due to its popu- 
lation of faults. We use the term fault strain to describe 
the strain due to a population of faults within a region. 
Fault strain is unrelated to strain suffered by material 
within a shear zone. It may seem contradictory to 
represent fault displacement (inherently discontinuous 
deformation) as strain (an inherently continuous de- 
scription). However the technique developed below and 
others like it (Molnar 1983, Jamison 1989) incorporate 
reasonable approximations to derive finite or infinitesi- 
mal strain magnitude and orientation from fault orien- 
tations and displacements. 

By writing equations for extension and shortening 
along an arbitrary traverse across a fault, Freund (1970) 
was the first to quantify deformation due to the cumulat- 
ive displacement of faults exposed at the surface. Reches 
(1976, 1978) introduced the continuum estimate and 
tensor notation to strain analysis of fault-slip data. The 
moment tensor summation (MTS) was developed to 
integrate the deformation due to earthquakes (Kostrov 
1974, Molnar 1983). It has also been recast and used on 
fault-slip data. Marrett & Allmendinger (1990) intro- 
duced the use of the geometric moment (Sammis et al. 
1987) to scale fault-slip tensors, and Jamison (1989) 
independently developed an infinitesimal fault strain 

tensor. To apply either of these methods, both of which 
are analogous to Molnar's (1983) MTS, two general 
assumptions must be made. First, the faulted region, 
which is inherently discontinuous, must be approxi- 
mated as a continuous medium in order to apply the 
principles of continuum mechanics. Second, infinitesi- 
mal strain theory must be adopted, which, although 
justifiable for seismicity, may not be appropriate for 
faults with large displacements relative to the size of the 
region. 

In this paper, we investigate the second assumption by 
developing the finite strain from fault-slip data (FSFS) 
method, a tensor technique for determining the finite 
strain of a region due to faults within the region. In 
contrast with geometric methods which employ tra- 
verses (Freund 1970, Reches 1976, Wojtal 1989), this 
solution requires the dimensions of the faulted region to 
be known. This requirement may make the traverse 
methods more generally applicable; however when 
applicable, the FSFS method provides additional infor- 
mation and insight. In the first section of the paper, we 
develop the theoretical background for the FSFS 
method and illuminate the differences between the 
FSFS method and the MTS applied to fault-slip data. In 
the second section, the newly developed technique is 
tested on sample data sets and compared to results 
obtained from the MTS applied to fault-slip data. This 
comparison shows that total fault displacement must be 
as large as the diameter of the region before a significant 
difference (i.e. variations greater than those in typical 
field data) between the methods is noted. In the third 
section, equations are developed to relate the FSFS 
method to rotation of regions cut by 'domino-style' 
faults. This model is chosen because it is a well-known 
setting for extremely high fault strains that require finite 
strain analysis. Also, the model offers a mechanism to 
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explain rigid block rotation due to fault movement  noted 
in many paleomagnetic studies. 

THEORETICAL BACKGROUND 

Finite homogeneous strain relates the initial and final 
states of a deformed body. The intermediate states are 
not addressed by this theory, so that progressive strain 
history need not be specified. Quantitative finite strain 
analysis of faults involves three steps: continuum esti- 
mation, multiplication and decomposition. We empha- 
size that this technique sacrifices geometric detail to 
attain a smoothed average of regional fault strain. 
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Cont inuum estimation 

Faulting is an inherently discontinuous phenomenon.  
However ,  when the observational scale relative to the 
fault size is increased, the deformation may be approxi- 
mated by continuous, homogeneous deformation 
(Reches 1976, 1978, Molnar 1983, Gauthier  & Angelier 
1985, Jamison 1989, Wojtal 1989). The motive for this 
step is clear-- i t  allows application of continuum mech- 
anics theory. Because strain is strictly a continuum 
measurement,  calculating 'fault strain' (really an oxy- 
moron) requires a continuum estimate of some sort. The 
continuum estimation made by analytical methods 
(Molnar 1983, Jamison 1989) involves estimating the 
shape of a circle cut and displaced by the fault as an 
ellipse (Figs. la-c) .  In spite of the necessity of such an 
estimation, its significance is seldom probed. When 
analyzing the kinematics of large fault strains, the esti- 
mate becomes more questionable because an offset 
circle begins to look less like an ellipse (Fig. lc). How- 
ever, one must bear in mind that the mechanics of the 
deformation are never approximated as continuous 
(Wojtal 1989). Simply the initial and final shape of the 
faulted regions are approximated as continuous. 

Reches (1976), Gauthier  & Angelier (1985) and 
Jamison (1989) quantify faulting by using the displace- 
ment gradient tensor referred to the undeformed state D 
(see Table 1 for list of mathematical symbols used 
throughout text). If ~ is the direction of accumulated 
slip, fi is the fault normal (see Appendix for details), s 
the average displacement on the fault, and w the width 
of the faulted region (Fig. 1), then the components of the 
displacement gradient tensor are (Reches 1976, p. 127): 

S ^ 
Dij = w a~nj. (i,] = 1, 2, 3). (1) 

In equation (1) and throughout the paper, north, east 
and down are i = 1,2 and 3, respectively. The ratio s /w  is 
the engineering shear strain, ~. This estimation is equiv- 
alent to distributing the fault displacement uniformly 
along the axis normal to the fault (Fig. lc).  The displace- 
ment gradient tensor defined by equation (1) differs only 
by a constant from the 'asymmetrical moment  tensor'  
derived by Molnar (1983): 

(e) B 1 = 5 3 0  km 
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Fig. 1. (a) Two-dimensional slice perpendicular to fault plane and 
parallel to movement direction (movement plane) of generic unfaulted 
region (map of state of Montana) with width w. Circle is inscribed to 
track strain. Note co-ordinate system for Fig. 1. (b) Same view of 
Montana after right-lateral fault with fault normal, fi, unit slip direc- 
tion, fi, and displacement, s. (c) Continuum estimation for circle in (b) 
superposed over true discontinuous final state. The deformation 
gradient tensor, F, relates the circle in (a) to the ellipse in (c). (d) 
Equivalent alternative to (c); three parallel faults with total shear 
equal to s. Dotted line is 'average' of broken vertical vectors. (e) 
Ellipse representing shape of deformed Montana shown in l(b). Semi- 
axes, B 1 and B2, and rotation angle, q~, are shown. To calculate aq from 
q~, w e  u s e  a l l  = a22 = c o s ( t b ) ,  a l E  = - - a21  = s i n ( q~ ) ,  a33  = 1 a n d  a13 = a,23 

= a31 = a32 = 0. [H °] is found from equation (4). (f) Superposition of 
ellipse cut by fault of displacement -s  and continuum estimate of 
retrodeformed ellipse. [Hq, which is related to [H °] by F (equation 

15), should approximate undeformed shape of Montana. 

M*ii = Mouifzi, (2) 

where M o is the seismic moment ,  the product of the 
elastic shear modulus, average seismic slip and fault 
surface area. Whereas equation (1) is dimensionless, 
equation (2) must be divided by the volume of the region 
and the shear modulus in order to make the quantity 
dimensionless and calculate strain. Once this is done, 
the two formulations are identical for cylindrical and 
rectangular volumes and differ by a factor of 3/2 for 
spherical and ellipsoidal volumes. 

Obviously, the choice of the width, w, over which to 
distribute the fault displacement is of paramount  im- 
portance (see Jamison 1989). Analytically and graphi- 
cally, shear strain and the width of a region are 
straightforward concepts; the ratio s /w  is readily appar- 
ent in Fig. l(c). The width simply represents the dimen- 
sion of the region perpendicular to the fault plane. Using 
this fact we make a modification to account for two 
possibilities: (1) faulted regions will seldom be equant. 
Faults of different orientations will 'feel' different 
widths; and (2) although the width of the region perpen- 
dicular to a fault will not change, other dimensions will 
change as deformation progresses. Therefore,  if the 
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Table 1. Symbols used in text. We use the standard convention that scalars and the components of vectors and 
tensors are italic, whereas the matrix notation of vectors and tensors are bold (i.e. Dqvs D) 
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Symbol Equation Parameter 

D,Dq 
S 

W 

fi, ~i 
~,  I~ i 

M;j 
Mo 
X 

B i  

aij 
[H~], [H% 
l 

n 

cij 
F 
F - I  

X 
I, ~q 
[F.*I-~ 
[Ft*] - t  

T 
S 
R 
V/] 

v,j 
to 

o~, o'~ 

Q 
a~ 
ft 
eqk 

Ct 

t2'  

(1) material displacement gradient tensor referred to undeformed state 
(1) average displacement on fault 
(1) width of region perpendicular to fault 
(1) unit vector in the direction of accumulated slip 
(1) unit vector normal to the fault plane 
(1) engineering shear strain, s/w 
(2) asymmetric moment tensor (Molnar 1983) 
(2) seismic moment, psA 
(3) position vector in deformed state 
(4) principal semi-axes of ellipsoid representing shape of faulted region 
(4) direction cosines of axes of ellipsoid representing faulted region 
(4) symmetric matrix that represents ellipsoid 
(4) the total number of faults in the faulted region 
(4) used as superscript to refer to a parameter of the nth fault 
(5) transformation matrix from fault coordinates to geographic coordinates 
(8) deformation gradient tensor referred to undeformed state 
(8) reciprocal deformation gradient tensor referred to undeformed state 
(8) position vector in undeformed state 
(9) identity matrix, Kronecker delta 

(14) the total reciprocal deformation gradient tensor up to the nth fault 
(14) the total reciprocal deformation gradient tensor 
(16) left stretch tensor 
(16) right stretch tensor 
(16) rotation tensor 
(17) eigenvectors of left stretch tensor 
(17) eigenvectors of right stretch tensor 
(21) infinitesimal rotation tensor 
(21) infinitesimal strain tensor 
(23) orientation of finite shortening and extension axes, Fig. 5(b) 
(24) unit normal vector to rigid plane in deformed state 
(24) unit normal vector to rigid plane in undeformed state 
(25) external rotation necessary to completely describe fault deformation 
(26) rotation magnitude of fault blocks, qb = a - a '  
(26) rotation axis direction cosines 
(26) permutation symbol, e l 2 3  = e312 = e231 = 1 

e321 = e213 = e l 3 2  = - -  1 

(31) initial angle between fault and reference boundary 
(32) final angle between fault and reference boundary 

deformed region contains faults of various orientations, 
the width perpendicular to any fault may significantly 
change over the period of faulting. For these two reasons 
we estimate the deformed (geologically observable) 
shape of the region as an ellipsoid (Fig. le) and use the 
reciprocal deformation gradient tensor to retrodeform 
the region stepwise (Fig. lf), at each step recalculating 
the width of the ellipsoid perpendicular to the fault. 

We start by picking the ellipsoid that best approxi- 
mates the shape of the deformed region (Fig. le).  This 
ellipsoid will be defined by the lengths of the three 
orthonormal principle semi-axes, B1, B2 and B 3, and 
their respective directions, relative to standard geo- 
graphic co-ordinates, expressed as unit vectors, alp aaj 
and a3j. The equation for any quadratic form in x 
(including the equation for an ellipsoid) can be written 
as (Murdoch 1966, pp. 237-239): 

x T H x = 1, (3) 

where x represents a vector variable and H a symmetric 
matrix. The components of H in geographic co-ordinates 
are (Malvern 1969, p. 32): 

1 
[H°]iy = aipayp (Bp) 2 (i, j, p = 1, 2, 3). (4) 

We use the square brackets and superscript (i.e. 0) to 
denote the ellipsoid calculated directly from the princi- 
pal semi-axes, Bp. To generalize the procedure, below 
we introduce [H"] ([Hn]i] in indicial form) to represent 
the ellipsoid retrodeformed by the first n faults. To find 
the width (w in Fig. le)  of the ellipsoid represented by 
[H"], we find the projection of the ellipsoid onto the 
plane containing li and ft. The transformation matrix c, 
whose components are clj = fij, c2j = aj and Caj = (fi × 
fi)j, accomplishes the projection: 

[Hn]'j = cipCjq[Hn]pq (i, j, p ,q  = 1, 2, 3). (5) 

The equation of the ellipse [Hn] ' projected onto the fi 
plane becomes: 

[Hn]~z(X2) 2 + 2[Hn]i2(XlX2) + [Hn]~l(Xl) 2 = l .  (6 )  

The width, w, represents the maximum dimension of the 
ellipse parallel to the xl axis (Fig. le). This can be found 
by setting the discriminant of equation (6) equal to zero 
and solving for Xl: 
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= 2X~ nax = 2/~I [Hn]22 [/.in 1,z (7)  w n 

[Hn]~l[Hn]22 - t-- 112 

Now the shear strain due to the nth fault is given by the 
ratio between the displacement on that fault s ~ and the 
width of the region w n-1 prior to retrodeformation by 
that fault. 

Multiplication 

For infinitesimal strains the bulk displacement gradi- 
ent tensor is simply the sum of the individual displace- 
ment gradients (D, equation 1) for each fault. For finite 
strain we introduce F, the deformation gradient tensor 
referred to the deformed state and its reciprocal, F -1. 
F operates on a vector in the undeformed state X to give 
a vector in the deformed state x and F - i  operates in the 
reverse manner (Malvern 1969, p. 156): 

x = F X (8a) 

and 

X = F -1  x.  (8b) 

We introduce both forms because F is more intuitive, 
representing deformation in the forward direction; how- 
ever, we calculate F -1, the deformation required to 
retrodeform a deformed region. For a single fault, F-1 
will be calculated from the negative of the displacement. 
The relationship between D and F is by definition (Mase 
1970, p. 80): 

D -= F - I, (9) 

where I is the identity matrix. Combining equations (1) 
and (9) and adding a notation for the nth fault, the 
components of the reciprocal deformation gradient be- 
come: 

- - S  n 

[Fn]/71 - wn aria; + 6i] , (10) 

where 6ij is the indicial form of the identity matrix. From 
equations (8) it can be seen that the imposition of 
successive large deformations is properly described by 
the product of individual deformation gradients tensors: 

Z = [ F2] X ( l l a )  

and 

X = [F1]x  = [rl][r 2] x, ( l l b )  

where g has been deformed by [F 2] but not [F1]. For 
large displacements, multiplying deformation gradient 
tensors (F) is not equivalent to summing displacement 
gradient tensors (D). Reintroducing equation (9) we get: 

[F 1] [F 2] = ([D 1] + I)([D 2] + I) 

= ( [D  l]  + [D 2] + [ D l l t D  21 + I). (12) 

If we assume second- and higher-order terms (i.e. 
[D1][D2], equation 12) to be zero, as is typical for 
infinitesimal strain analyses, then summation is equival- 
ent to multiplication. 

Equation (12) also highlights an unfortunate compli- 
cation of finite strain theory. Matrix multiplication is not 
commutative and reversing the order of deformation 
yields 

IF2] IF 1] = ([D 2] + [D 11 + IDa] [D 1] + I). (13) 

Equations (12) and (13) differ only in the second-order 
term. If [D 1] and [I) 2] represent strain due to slip on 
parallel faults, [D 1] and [D a] differ only be a scalar 
multiple and [Da][Dq equals [O1][O2]. However,  in 
general [DE][D 1] is not equal to [D1][D2]. Therefore, 
unless faults are parallel, we must be able to determine 
their relative ages from cross-cutting relations in order 
to correctly impose the strains. 

Now we are prepared to combine the reciprocal defor- 
mation gradient tensors of multiple faults within the 
same region. The total reciprocal deformation gradient 
tensor [F n*]-x due to n faults ordered from youngest to 
oldest (1 -- youngest fault), can be calculated as 

[Fn*] -1 = [ F " ] - I . . .  [FZ]-I[FI] -1. (14) 

To complete the procedure, we find the shape of the 
region after retrodeforming by [F"*] -1. We write 
equation (3) in terms of the undeformed co-ordinates, 
X, instead of the deformed co-ordinates, x. Substituting 
equation (8a) into equation (3) gives: 

[H"] = [Fn*]T[H°] [Fn*], (15) 

where [H n] represents the shape of the region (an 
ellipsoid) after retrodeforming up to the nth fault. 

Now w n- 1, the width of the ellipsoid perpendicular to 
the nth fault prior to retrodeformation, can be used to 
calculate the deformation gradient tensor for each fault 
(equation 10). Thus we have developed an iterative 
process for quantifying fault deformation. By starting 
with equation (4) and then iterating equations (5), (7), 
(10), (14) and (15) from the youngest (n = 1) to the 
oldest (n = t) fault, we can find the bulk reciprocal 
deformation tensor, [Ft*] -1, which can then be inverted 
to find the bulk deformation gradient tensor, [Ft*]. [H t] 
will correctly describe the shape of the undeformed 
region. 

Multiple sets of  simultaneous faults 

The requirement of ordering faults from youngest to 
oldest for equation (14), presents practical problems for 
the finite strain method. In a three-dimensional strain 
field, multiple faults of various orientations may develop 
simultaneously (Reches 1978). Even in two-dimensional 
strain, coeval conjugate faults or faults with bends make 
it impossible to correctly choose fault order. The solu- 
tion to this dilemma is suggested by the physical 
process--incremental slip. We can combine the defor- 
mation of two coeval faults by dividing the total slip on 
both faults into slip increments (s/a) and then iterating 
equations (5), (7), (10), (14) and (15) from 1 to a. In 
other words, instead of running the method on two faults 
with displacements s 1 and s 2, the method should be run 
for 2a faults with displacements s l /a  and s2/a. If several 
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Fig. 2. Three alternative descriptions of the deformation gradient tensor, F. In each case the unit circle, represented by the 
identity matrix, I, is deformed. Initial and final states are identical; only 'intermediate' state differs. (a) Deformation 
described by rotation and then left stretch tensor. (b) Deformation described by right stretch tensor and then rotation. 
(c) Deformation described by infinitesimal rotation and strain tensors. Note 10% dilation of circle in 'intermediate' state. 

faults are active at once, this expression can be genera- 
lized to many faults. The choice of slip increment (a) is 
arbitrary; the reciprocal deformation gradient tensor 
(equation 14) will always converge by 50 iterations and 
usually sooner. This modification should be used on 
coeval conjugate faults, and the difference will be signifi- 
cant in comparison with arbitrarily choosing an order of 
faulting. Major thrust faults, where different segments 
have different orientations, can be modeled by dividing 
the thrust into constant dip segments and assigning a 
displacement normalized by the length of the segment 
(see application below). 

Decomposit ion 

[Ft*l describes the total deformation due to the 
summed faults. It is useful to break deformation into 
pure strain and rigid body rotation components. The 
polar decomposition theorem states that any non- 
singular second-order tensor, F, is the product of an 
orthogonal rotation tensor, R, and a positive-definite 
symmetric tensor, S or T (Malvern 1969, pp. 172-181): 

F = T R  = RS.  (16)  

In the first form of equation (16), the deformation 
consists of rotation R followed by stretch T, the left 
stretch tensor (Fig. 2a). The second form consists of 
stretch S, the right stretch tensor, followed by rotation R 
(Fig. 2b). These representations do not imply that the 
deformed state was achieved by one of two possible 
combinations of pure rotation and pure shear. Rather S 
may be considered to act in the undeformed state on the 
position vector X while T acts in the deformed state on x. 
The stretch tensors are calculated from (Malvern 1969, 
p. 174): 

T = ~/FF T (17a) 

and 

.$6 15:6-G 

S = v'-F--~. (17b)  

The eigenvectors (vq and Vq, respectively) of the tensors 
T and S give the orientations of the orthogonal set of 
principal stretch axes; the eigenvalues (Ti, Si) are the 
principal stretch magnitudes. Principal finite 
elongations, el, are given by Si - 1 or Ti - 1 .  

The rotation tensor, R, rotates the principal axes of S 
into the principal axes of T and its components are 
calculated from the eigenvalues of the stretch axes 
(Malvern 1969, p. 177): 

Riy = VkiVkj (i, j, k = 1, 2, 3). (18) 

The left stretch tensor, T, which describes the strain of 
a deformed region in the deformed co-ordinate system, 
is preferred for analyzing the strain that a deformed 
body has suffered. Because S describes strain in the 
undeformed co-ordinate system which the geologist 
never sees, S is not generally useful to geoscientists 
(Owens 1973). 

Molnar (1983), Gauthier & Angelier (1985) and 
Jamison (1989) assume that the deformation due to 
faulting is infinitesimal, and they decompose the dis- 
placement gradient into symmetric and antisymmetric 
parts, e and to, respectively. Written in indical form this 
becomes: 

where 

and 

Dq = ogq + co, (19) 

wq = ½(Dq - Dji) (20a) 

Eij = ½(Oij q- Off) ( 2 0 b ) .  

Such a mathematical operation can always be per- 
formed. At large strains, however, o9 and e do not 
represent pure rotation and pure strain, respectively. 
For example, in Fig. 2(c), 0)32 = - - ( 9 2 3  = 0.5. This 
represents 0.5 radians (28.6 °) of rotation and 10% dila- 
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7 ffi 0 . 0  7ffi 1.0 7 =  2.0  7 = 3 .0  

(a) 

Ibl 0 S f f  
(c) / /  

Fig. 3. Graphical comparison between (a) faulted region, (b) finite 
strain estimate (left stretch tensor, T) and (c) infinitesimal strain 
estimate (infinitesimal strain tensor, e) for three different shear 

strains. 

tion (intermediate circle). The finite rotation (R) gives 
tan-l(0.5) = 22.6 ° rotation and no strain. 

STRAIN MAGNITUDE AND ORIENTATION 

Given the fault variables fi, f~ and s, and the shape of 
the region, [H°], we can calculate the maximum stretch 
magnitude and orientation (the eigenvalues and eigen- 
vectors, respectively, of the left stretch tensor, T = 
V'[F t*] [Ft*] T) of a faulted region. For the simple case of 
a single fault or a single set of parallel faults, we can solve 
for strain magnitude and orientation in terms of one 
independent variable, y, the shear strain. This is shown 
graphically in Fig. 3 and solved analytically below. 

Magnitude 

Ramsay & Huber (1983, p. 30) give the solution for 
maximum finite stretch magnitude, T~, as a function of 
the shear strain (y = s/w) assuming constant volume: 

~ ~ V~z + 4 • (21) T I =  1 + - - + ~  

The more familiar maximum infinitesimal stretch magni- 
tude, E1 + 1, is the first-degree Taylor polynomial for 
equation (21) when ~, = 0. Then stretch becomes linear 
with respect to shear strain: 

T 1 ~ E 1 + 1 = 1 + ~. (22) 
2 

0 I 2 3 4 

shear strain, 
Fig. 4. Comparison of finite (equation 21) and infinitesimal (equation 

22) stretch magnitudes. 

Allmendinger 1990). On the other hand, finite strain 
axes rotate as displacement, s, increases. If stretch axis 
orientation is defined as shown in Fig. 5b, the angles are 
given by (Ramsay & Huber 1983, p. 27): 

0~ = 90° + ½ t a n - l ( -  ~) (23a) 

and 

0 ; = 1 8 0 ° +  ½ t a n - l ( -  ~), (23b) 

where 0' s is the acute angle between the axis of shorten- 
ing and the fault plane and 0e is the obtuse angle 
between the axis of extension and the fault plane. 

At a shear strain of 1 (equivalent to a finite elongation 
of 62%), the finite axis will differ from the infinitesimal 
axes by 13 ° (Fig. 5a). A 13 ° error due to assuming 
infinitesimal strain is comparable to orientation vari- 
ation of normal field data. Field data can vary due to two 
factors; measurement error, and fault plane and striae 
undulation. The first type of error is typically small; a 
geologist should be able to measure plane orientations 
and line directions accurate within a few degrees. In our 
experience, the second type of 'error' can be much 
larger. It is common for an individual fault measurement 
(strike, dip, striae azimuth or striae plunge) to vary 
about the average value by +5 ° . Thus, although the total 
uncertainty depends on several factors (displacement, 
diameter, fault orientation, and striae direction), finite 
strain methods should always be used when the total 
shear strain is above unity (~, > 1). 

In Fig. 4, equations (21) and (22) are graphed for 
comparison. For y = 1, finite strain theory gives T1 = 
1.62 whereas infinitesimal theory gives E 1 + 1 = 1.5. 
Thus at a finite elongation of 62%, infinitesimal theory 
would estimate only 50% elongation. 

Orientation 

For a single fault the infinitesimal (or incremental) 
strain axes are oriented 45 ° to the fault plane. Seismolo- 
gical P and T axes are incremental strain axes (Marrett & 

APPLICATIONS: STRAIN MAGNITUDE AND 
ORIENTATION 

Synthetic data from Wojtal (1989) 

Traverse methods (Freund 1970, Reches 1976, Wojtal 
1989) involve measuring fault displacement and orien- 
tations on arbitrary traverses across the faulted region. 
From this data, finite strain magnitude and orientation 
can be derived. Wojtal (1989) illustrated his method on 
the synthetic data set shown in Fig. 6. 
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Fig. 5. (a) Comparison of the orientation of finite (equation 23) and infinitesimal stretch axes. (b) Co-ordinate system. 

The objective of the FSFS method and Wojtal's (1989) 
method are identical; only the procedures are different. 
Therefore, a comparison of both analyses of Fig. 6 offers 
a check for the FSFS method. In this synthetic model, 
two generations of evenly spaced faults cut the region. It 
is straightforward to measure the displacements (num- 
bers in Figs. 6b & c) on each of these faults. We start our 
analysis by estimating the ellipsoid, [I-I °] (equation 4) 
that best fits the shape of the region in Fig. 6(c). The 
third semi-axes (perpendicular to the page) can be 
arbitrarily chosen as unity in this two-dimensional 

example. Equation (7) calculates the width (w °) of the 
ellipse and then [FZ] -z (equation 10) can be calculated 
for the youngest generation of parallel faults. Iteration 
of equations (7), (10) and (14) gives [F2*] - 1 which can be 
inverted and then decomposed to find the stretch, T 
(equation 17a). The eigenvalues of T, which represent 
the principal stretch magnitudes are T1 = 2.04, 1"2 = 1, 
and T3 = 0.49. The stretch axis orientations are found 
from the eigenvectors vii. Thus we have characterized 
the finite strain ellipse (Fig. 6d) for the region shown in 
Fig. 6(c). The fault displacements (shear strains) 

(a) (b) 
.55 

//.25 

.25 
(c) 

25 

~1.25 
,4 

.25 "3 

.4 

Fig. 6. Analysis of synthetic data from Wojtal (1989). (a) Undeformed region. (b) Region cut by one fault set. Numbers are 
displacements in arbitrary units. (c) Region cut by two fault sets. Superposed ellipse is estimate of the shape of the region, 
[I-I°]. (d) Gray ellipse is the finite strain calculated by the FSFS method. Black ellipse is the finite strain estimated by Wojtal 

(1989). 
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(d) 4'1°./~' 
S Maximum Stretch=4.1 

Horizontal Stretch = 0.36= ~ ~  

/ / / , ,  
f Minimum Stretch = 0.24 

Fig. 7. Example from the Precordillera thrust belt. (a) Balanced cross-section of Allmendinger et al. (1990). See Table 2 for 
fault displacements. (b) Estimated ellipse [H °] superposed over shape of faulted region. Major semi-axis is 18 km and 
PlUnges 12 ° to the west. Minor semi-axis is 6.6 km. Scale for (b) and (c) is 50% of (a). (c) Undeformed ellipse 
[H'] superposed over palinspastic restoration of Allmendinger et al. (1990). Major semi-axis is 44 km and plunges 34 ° to the 
west. Minor semi-axis is 2.7 km. The discrepancy in orientation between the undeformed ellipse and the palinspastic 
restoration is explained in the 'Fault Strain and Rotation' section. (d) Strain of upper plate of Precordillera fold and thrust 

belt as determined by the FSFS method. 

imposed  in Figs. 6(b) & (c) cor respond  to a h o m o g e n o u s  
strain with stretches of  T1 = 2.05 and T3 = 0.48; Woj ta l ' s  
(1989) graphical  m e t h o d  gave 7"1 = 2.23 and T3 = 0.44. 

PrecordiUera fo ld  and thrust belt 

To apply the FSFS me thod  to a field example,  we 
briefly examine  the fault strain in the Precordi l lera  of  
Argent ina ,  a thin-skinned fold and thrust  belt. Al lmend-  
inger et al. (1990) present  a ba lanced  cross-section of  the 
thrust  belt  (Fig. 7a) f rom which we derive fault displace- 
ments  and dips. The  thrust  belt  has four  major  thrusts,  
each of  which have kinks. We  treat  each non-planar  
thrust  as a series of  s imul taneous faults with different  
dips (Table 2). Segment  displacements  are normal ized  
by segment  lengths. The  ellipsoid [I-I °] is shown super- 
imposed  on the outl ine of  the de fo rmed  area in Fig. 7(b). 

Employ ing  the FSFS m e t h o d  with the s imultaneous 
fault a m e n d m e n t  we find that  the max imum shor tening 
is 76% (1.0-0.24) and dips 49 ° toward  the foreland (Fig. 
7d). Al lmendinger  et al. (1990) calculated about  70% 
horizontal  shor tening f rom the cross-section; the FSFS 
me thod  yields 64% horizontal  shortening.  These  are 

high strain values, and the finite strain me thod  is clearly 
preferred.  

Hor izon ta l  shor tening across the Precordil lera is ab- 
normal ly  high; shor tening in most  foreland thrust  belts is 

Table 2. Input data for FSFS analysis of Precordil- 
lera fold and thrust belt. Thrusts are ordered from 
youngest to oldest (Fig. 7a). Each thrust was divided 
into constant dip segments and segment displace- 

ments were normalized by segment lengths 

Total s Segment dip Normalized s 
Thrust (km) (°) (km) 

1 27 30 27.0 

2 20 30 6.0 
55 10.0 
30 4.0 

3 29 55 11.2 
0 9.4 

30 8.4 

4 21 55 4.5 
0 4.7 

30 3.1 
55 8.7 
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nearer to 50%. However, even at this more typical strain 
(T1 > 2, ~ > 1.5), the infinitesimal method significantly 
underestimates strain magnitude and misidentifies strain 
orientation (cf. Figs. 4 and 5). Although this example 
demonstrates the application of the FSFS method to 
thrust belts, we emphasize that it is not necessarily 
desirable to do so. Most of the interesting geometric 
detail is lost in applying the continuum assumption. 

Notice the shape and orientation of the undeformed 
region is shown in Fig. 7(c). The aspect ratio of the 
undeformed ellipsoid is nearly identical to that derived 
by Allmendinger et al. 's (1990) palinspastic restoration 
shown in the background of Fig. 7(c). However, the 
ellipse is rotated counterclockwise 33 ° . This disparity is 
due to the fact that IF t*] does not completely describe 
the deformation. Also notice the average 30°W dip of 
the strata in the balanced cross-section (Fig. 7a). These 
two issues are related because the basal detachment 
forces a counterclockwise rotation of the strata. We will 
solve the problem of fault strain and rotation in the next 
section. 

FAULT-STRAIN AND ROTATION 

Block rotation is an important consequence of fault 
deformation yet to be addressed. Although faulting does 
not always create rotations, rotation of faults and fault 
blocks is quite common. Paleomagnetic studies in re- 
gions cut by strike-slip faults often show vertical-axis 
rotations (e.g. Ron et al. 1984, 1990). As mentioned 
above, the thrust sheets in the Precordillera example 
have experienced an average horizontal axis rotation of 
30 ° . 

Unfortunately, decomposing deformation into pure 
strain (S or T) and pure rotation (R) does not give block 
rotations. The tensor R describes the rotation of the 
material lines in the initial state that end up parallel to 
the principal stretch axes in the final state. To show that 
this rotation is not  related to rigid block rotation as 
measured by paleomagnetic sampling, a distinction must 
be made between the continuum estimation and the 
actual discontinuous fault blocks. Notice that in Figs. 
l(b) & (d), neither the faults nor blocks have rotated. 
When the faulted region is viewed as a continuous 
package, an apparent rotation of material lines is recog- 
nized (dotted line in Fig. ld). However, the actual 
segments of the broken vectors do not rotate (thin line 
segments in Fig. ld). Thus, R does not describe the 
rotation that would be measured by paleomagnetic 
studies within a rigid block in a faulted region. In fact, 
non-rotating strike-slip faults cannot create coherent 
large-scale vertical-axis block rotation like those often 
identified by paleomagnetic rotations. 

Jackson & McKenzie (1988) also argue against using 
the rotation tensor derived from the asymmetric mo- 
ment tensor summation (Molnar 1983) to determine 
paleomagnetic rotations. Their argument hinges on the 
inability of seismic observations to differentiate between 

(a) 

(b) 

"x I d , ~ \  / 
s = 0 . 5 5  s = 0 . 5 5  

(c) 

v $ - 0 . 4 9  

Fig. 8. Domino blocks model. (a) Initial configuration, bold lines are 
rigid reference boundary. (b) Region deformed by one fault set. Fault 
displacements (s) are shown in arbitrary units. (c) Region deformed by 
two fault sets. Ellipse [I-1 °] in (c) was chosen to represent deformed 

area. Ellipse [H~] in (a) was calculated from equation (30). 

the rotation of the boundaries of a region and rotation of 
the faults. Below we argue that the MTS or FSFS 
method alone can never  be used to determine rigid block 
rotation. In addition to the fault-strain information 
determined by the MTS of FSFS method, the orien- 
tation of a rigid reference boundary is needed to find 
block rotation (Garfunkel & Ron 1985). 

Thompson (1960) developed a simple model to relate 
simultaneous tilting and normal faulting in the Basin and 
Range Province. To explain vertical axis rotations by 
strike-slip faults, Freund (1974) adopted a similar 
model. The domino-style fault blocks model, as it has 
become known, has been widely applied to extensional 
regimes (Proffett 1977, Miller et al. 1983, Mand11987) as 
well as to high strain strike-slip regimes (Ron et al. 1984, 
1990). The FSFS method can be used on data that 
conform to this model, once the implications of the 
domino-style fault blocks model are further understood. 

The model's key feature is that a rigid non-rotating 
boundary (bold lines in Fig. 8) forces the faults and fault 
blocks to rotate because the blocks cannot be displaced 
past this boundary (Garfunkel & Ron 1985). The rigid 
reference boundary is usually assumed to be a detach- 
ment or master fault that separates faulted and 
unfaulted regions. 

Now the task is to relate shear magnitude and direc- 
tion (fault orientation and displacement) in domino- 
style terrains to block rotation. Garfunkel & Ron (1985) 
attack this problem from the opposite direction by 
deriving fault strain from paleomagnetic rotation. In 
order to use the FSFS method to solve for block ro- 
tation, we must derive rotation from fault displacement. 

We start by specifying the orientation of the rigid 
boundary (a plane) using the unit vector normal to the 
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(a) 

Fig. 9. Domino blocks model. (a) Deformed region, ~' is unit  normal 
to rigid plane. (b) Undeformed region, assuming no rotat ion of faults, 

is calculated from equat ion (24). • gives the external rotat ion forced 
by the rigid reference boundary.  

plane in the deformed state, ~' (Fig. 9). The normal to 
the plane in the undeformed state, ~, is (March 1932, p. 
294, Lipshie 1984, p. 315): 

= [Ft*]r~ '. (24) 

However, ~ is calculated assuming no external rotation 
(Fig. 9b). We seek an orthogonal rotation tensor, Q, 
that when combined with [F t*] ensures that the rigid 
plane (~') is not rotated by the deformation. That is, find 
Q such that, 

~' = [V '*Q]~  '. (25) 

The constant 2 is necessary in equation (25) because 
although ~' can not rotate, it will strain. It must be made 
clear that Q, the external rotation, is unrelated to R 
(equation 16), the continuum rotation. In the complete 
finite strain description of the deformation, an unde- 
formed vector will first be rotated by Q, then rotated by 
R, and then stretched by T. 

For two square tensors A and B, lAB] r = BrA T and for 
an orthogonal tensor Q, QT = Q-1 (Malvern 1969, pp. 
37 and 383). These properties and equation (24) allow us 
to rewrite equation (25) as, 

A, ~ '  = Q - I ~ .  (26) 

Thus Q-1 rotates ~ to ~ ' ,  and Q rotates ~.¢' to ~. The 
components of Q are given by the unit vector rep- 
resenting the axis of the rotation fl and the magnitude of 
the rotation, • (LePichon et al. 1973, p. 37): 

Qij = l~ i l~ j ( l  - c o s  it)) - eijk~'~j sin ~ + 6ij c o s  (I), (27) 

where eqk is the permutation symbol (Malvern 1969, p. 
21). Because the rotation axis, f / ( a  unit vector), will be 
perpendicular to both ~' and ~, it can be found from their 
cross product: 

o . -  ~x~ '  
It  x ~'I (28) 

Furthermore the angle between ~' and ~ is the magni- 
tude of rotation • which can be found from the dot 
product: 

o : c o s   29, 

Now we can return to the problem discussed at the end 
of the Precordillera fold and thrust belt example. If the 
basal detachment (strike = 0 °, dip = l°W) is chosen as 
the rigid plane, we find that qb = 33 °. Furthermore the 
correct shape and orientation of the undeformed region 
can be found from 

[H~] = [Ft*Q]T[I-I °] [Ft*Q]. (30) 

Applying equation (30) we find coincidence of the unde- 
formed ellipse and the palinspastic reconstruction of 
Allmendinger et al. (1990). 

In order to write equations and make graphs that will 
explicitly represent rotation as a function of fault strain 
and geometry, we start with only one fault set (Fig. 8b). 
Garfunkel & Ron (1985) solve for rotation, ~ ,  as a 
function of shear strain, 7, and the initial angle between 
the fault and the reference boundary, a: 

1 
cot (~) - Y sin2 (a) + cot (a). (31) 

They use the convention that qb > 0 is a counterclock- 
wise rotation and 7 > 0 is a right lateral fault. To find 
as a function of a ' ,  the final angle between the fault and 
the reference boundary, substitute a '  = a + qb into 
equation (31) and rearrange to find: 

i 

1 \ \ \ \ \ \  i Shear Zone J ! 

t ....... I 
.1 1 10 

shear strain, 7 

Fig. 10. Graph derived from equation (31) showing the relation 
between fault rotation (contours),  initial fault orientat ion (vertical 
axis), and shear strain (horizontal axis). If two of the three parameters  
are known, then the third can be found using this graph. For example, 
the filled square shows position of the single-generation domino-block 
model in Fig. 8(b) (a  = 65 ° and qb = 30 °, therefore y ~ 1). In the shaded 
region, the dimension across the region perpendicular to the rigid 
boundary (z) increases with increasing shear strain. In the unshaded 
region the dimension decreases, more typical of domino blocks 
models. For example, the arrow shows the rotation path as shear strain 
increased in the Transverse Ranges of southern California. First the 
faulted region widened and later thinned. To use final fault orientat ion 
(equation 32) instead of initial fault orientation,  invert the left-hand 
axis (0 ° at the top and 180 ° at the bottom). The filled circle denotes the 
parameters  in the Transverse Ranges. The rotation (qb = 80 °) and final 
orientat ion between domino faults and the rigid boundary (a '  = 30 °) 
are known; the shear strain of two, read from this figure, is used to 

derive displacements for faults in the Transverse Range (Table 3). 
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Fig. 11. San Andreas  Fault and adjacent areas. Map from Hornafius et al. (1986). Letters referring to faults are keyed to 
Table 3. Fault displacements are indicated by piercing points (filled circles). Paleomagnetic rotations are shown as circular 
arrows with magnitude inside. Shown in the inset at the lower left are the elliptical strain domains [I-I ° ] defined in this paper  
(Table 3). Strain ellipses around perimeter  are for each of the domains. The maximum principal strain magnitude and 

orientation are given below each ellipse. 

1 
cot (~) ~' sin 2 (a ' )  cot (a ') .  (32) 

Thus, for a single set of shear planes, we can determine 
the rotation of a region (~) given the shear strain (~,) and 
the final or initial fault orientation (Fig. 10). Notice the 
importance of the orientation of the rigid boundary. If 
the rigid boundary is parallel to the faults (a = 0°), there 
will be no rotation. If the initial or final orientation of the 
rigid boundary is perpendicular to the faults (a = 90°), 
the block rotation will be tan -1 y. Clearly the 'non- 
rotating' faults discussed in the previous section are 
simply a specific case (a = 0 °) of this more general 
model. 

Starting at a given initial fault orientation, a horizon- 
tal path from left to right on Fig. 10 indicates rotation as 
shear strain progresses. If the path is within the shaded 
region the shear zone widens (z increases, Fig. 10); in the 
unshaded region the shear zone thins (z decreases, Fig. 
10). Figure 10 can also be used to estimate the minimum 
shear on one fault set necessary to create a paleomagne- 
tic rotation. If, for example, a paleomagnetic rotation of 
40 ° is thought to result from slip on one set of parallel 
rotating faults, the 'nose' of the 40 ° contour indicates a 
minimum shear strain of 0.7 to produce this rotation. 
This corresponds to a finite elongation of 41% (equation 
21). Figure 10 provides a rapid way to assess whether 
local faulting produces sufficient strain to cause a 
measured paleomagnetic rotation. 

Note that while regional shear of the domino blocks is 

left-lateral, the sense of each rotating fault is right- 
lateral. Twiss et al. (1991) explain this potential kinema- 
tic discrepancy by applying the continuum theory of 
micropolar kinematics. In their scheme, two indepen- 
dent scales of rotation, microrotation (rotation of the 
blocks) and macrorotation (rotation of the region) are 
defined. The justification for two scales of rotation is that 
fault zones are composed of granular material. 
Although the method of Twiss et al. (1991) can be 
successfully used to interpret and predict slickenline 
patterns, it does not address strain or total rotation due 
to faulting. 

Domino-style fault blocks example 

As a test of the quantitative domino block model 
presented above, we find strain magnitude, orientation 
and rotation for the model shown in Fig. 8(c). With the 
displacement data shown in Figs. 8(b) & (c) and the 
ellipse [I-I °] shown in Fig. 8(c), we can find the strain and 
rotation for the region due to the 14 faults. The FSFS 
analysis of the model in Fig. 8(c) gives a maximum 
stretch of 2.7 oriented nearly parallel to the rigid bound- 
ary and a minimum stretch of 0.37 nearly perpendicular 
to the rigid boundary. If the unit normal to the rigid 
plane, ~', is chosen and equations (24), (28) and (29) 
used, the FSFS analysis gives the block rotation due to 
the faults within the region as 60°; as can be verified by 
measurement on Fig. 8(c). 

Real-world examples of the domino-style fault block 
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Table 3. Input for FSFS analysis of southern California. The parameters used for each fault: o and 6 are the 
strike and dip of the fault plane, respectively, a and fl are the striae azimuth and plunge, respectively, and s is 
the displacement. Displacements were estimated in four ways: H = displacement explicitly given by 
Homafius et al. (1986), R = displacement implied by reconstructions of Hornafius et al. (1986), P = 
displacement constrained by paleomagnetic rotations given by Hornafius et al. (1986) and L = displacement 
estimated from trace length. The domain names are also shown in Fig. 10. The semi-axes lengths (/~ and t/2) 
and orientation (q~) for each domain's ellipse are given. To calculate a 0 from qL we use all = a22 = cos(~b), 

a12 = --a21 = sin(~b), a33 = 1 and a13 = a23 = a31 = a32 = 0 

a, 6 a, fl s Source 
Fault (°) (°) Sense (km) of s Domain 

A San Juan Chimineas 140 90 140 0 RL 14 H D 1 
B Rinconada 140 90 140 0 RL 56 H B 1 = 50 km 
C Los Osos 130 90 130 0 RL 35 R B E = 170 km 
D Hosgri 140 90 140 0 RL 110 H q~ = 53 ° 
E Orcutt 129 90 129 0 RL 10 R 

F Big Pine 75 90 75 0 LL 14 H 0 2 
G Santa Ynez 90 90 90 0 LL 32 P 
H San Cayento 90 90 90 0 LL 32 P B l = 45 km 
I Oak Ridge 84 90 84 0 LL 32 P B E = 133 km 
J Malibu Coast 84 90 84 0 LL 60 R ~ = 0 ° 
K Dume 90 90 90 0 LL 20 R 

L San Jacinto 130 90 130 0 RL 24 H D 3 
M Elsinore 130 90 130 0 RL 40 H B 1 = 60 km 
N Newport 135 90 135 0 RL 20 R B 2 = 165 km ~ = 18 ° 

O Pinto Mountain 85 90 85 0 LL 26 P D 4 
P Blue Cut 84 90 84 0 LL 26 P B 1 = 35 
Q Chiriaco 80 90 80 0 LL 26 P B 2 = 78 
R Salton Creek 80 90 80 0 LL 26 P ~ = 29 ° 

S Santa Lucia 150 90 150 0 RL 20 L Other west of SAF 
T San Clemente 138 90 138 0 RL 20 L 
U Santa Rosa 152 90 152 0 LL 20 L B 1 = 120 km 
V San Gabriel 120 90 120 0 RL 60 L B 2 = 360 km 
W Unnamed 62 90 62 0 LL 5 L q~ = 33 ° 
W Unnamed 60 90 60 0 LL 5 L 
W Unnamed 54 90 54 0 LL 5 L 

X Helendale 136 90 136 0 RL 20 L Other east of SAF 
Y Lenwood 144 90 144 0 RL 20 L 
Z Calico 140 90 140 0 RL 20 L B 1 = 125 km 
AA Ludlow 140 90 140 0 RL 20 L B 2 = 200 km 
BB Bristol Mountain 135 90 135 0 RL 20 L tp = 40 ° 
CC Garlock 68 90 68 0 LL 60 H 
DD Death Valley 137 90 137 0 RL 30 L 
EE Blackwater 137 90 137 0 RL 30 L 
FF Lockhart 120 90 120 0 RL 20 L 

SAF 130 90 130 0 RL 300 H B l = 240 km 
B2 = 360 km ~ = 29 ° 

m o d e l  a r e  n u m e r o u s .  R o n  et al. ( 1 9 9 0 )  s u m m a r i z e d  a 

f i e ld  s t u d y  in  t h e  M o u n t  H e r m a n  a r e a  a d j a c e n t  to  t h e  

l e f t - l a t e r a l  D e a d  S e a  t r a n s f o r m  fau l t .  T h e  s t u d y  in-  

c l u d e d  t w o  p a r t s :  (1)  p a l e o m a g n e t i c  s a m p l i n g  t h a t  i nd i -  

c a t e d  69 ° + 13 ° v e r t i c a l  axis  r o t a t i o n ;  a n d  (2)  f a u l t  

m e a s u r e m e n t s  t h a t  i n d i c a t e  o n e  a c t i v e  a n d  t w o  i n a c t i v e  

s e t s  o f  m i n o r  f au l t s .  W i t h o u t  a d d r e s s i n g  t h e  d i s p l a c e -  

m e n t  m a g n i t u d e s  o n  t h e  f au l t s ,  R o n  et al. ( 1990 ) ,  c o n -  

c l u d e  t h a t  t h e  f a u l t s  r e p r e s e n t  t h r e e  g e n e r a t i o n s  o f  

d o m i n o - s t y l e  f a u l t s  t h a t  a r e  r e s p o n s i b l e  f o r  t h e  p a l e o -  

m a g n e t i c  r o t a t i o n .  U s i n g  t h e  o r i e n t a t i o n s  o f  t h e  t h r e e  

f a u l t  s e t s ,  t h e  o r i e n t a t i o n  o f  t h e  D e a d  S e a  T r a n s f o r m  

( t h e  r ig id  b o u n d a r y )  a n d  t h e  s h a p e  o f  t h e  f a u l t e d  r e g i o n  

( R o n  et al. 1990) ,  w e  c a n  e s t i m a t e  t h a t  s h e a r  s t r a i n s  

s l i gh t ly  g r e a t e r  t h a n  1 o n  e a c h  f a u l t  s e t  a r e  n e c e s s a r y  to  

a c c o u n t  f o r  t h e  m e a s u r e d  p a l e o m a g n e t i c  r o t a t i o n  ( s e e  

t h e  A p p e n d i x ) .  A l s o ,  t h i s  a n a l y s i s  g ives  t h e  m a x i m u m  

( h o r i z o n t a l )  s t r e t c h  f o r  t h e  d e f o r m e d  r e g i o n  as  2 . 6  

p e r p e n d i c u l a r  t o  t h e  r i g id  b o u n d a r y .  

San  A n d r e a s  Faul t  and  adjacent  areas 

A s  a f ina l  e x a m p l e ,  w e  a p p l y  t h e  F S F S  m e t h o d  t o  

s o u t h e r n  C a l i f o r n i a  a d j a c e n t  t o  t h e  S a n  A n d r e a s  F a u l t .  

A l t h o u g h  t h e  p r i m a r y  f e a t u r e  o f  t h e  r e g i o n  is t h e  S a n  

A n d r e a s ,  n u m e r o u s  s m a l l e r  f a u l t s  r e c o r d  t h e  r e g i o n a l  

f a u l t  s t r a i n  o f  t h i s  d i f f u s e  p l a t e  b o u n d a r y .  T o  f ind  f a u l t  

o r i e n t a t i o n s ,  d i s p l a c e m e n t s  a n d  p a l e o m a g n e t i c  ro -  

t a t i o n s  w e  u s e d  t h e  d a t a  c o m p i l e d  b y  H o r n a f i u s  et al. 

(1986)  (Fig .  11 a n d  T a b l e  3) .  T o  a p p l y  t h e  F S F S  m e t h o d ,  

w e  d e f i n e  f o u r  s e p a r a t e  s t r a i n  d o m a i n s .  E l l i p t i c a l  

d o m a i n s  w e r e  c h o s e n  s u c h  t h a t  t h e  f a u l t s  cu t  t h e  b o u n d -  

a r i e s  o f  t h e  e l l i p se  (Fig .  11, i n s e t ) ;  t h e  s e m i - a x e s  l e n g t h s  

a n d  o r i e n t a t i o n s  o f  t h e  d o m a i n  e l l i p se s  a r e  g i v e n  in 

T a b l e  3. T h e  f a u l t  d i s p l a c e m e n t s  in  D 1 a n d  D3 w e r e  

t a k e n  d i r e c t l y  f r o m  H o r n a f i u s  et al. (1986)  ( T a b l e  3) .  I n  

D2 a n d  D4,  w e  u s e d  t h e  p a l e o m a g n e t i c  r o t a t i o n  a n d  Fig .  

10 t o  e s t i m a t e  y. F o r  e x a m p l e ,  to  p r o d u c e  80  ° o f  r o t a t i o n  

in  t h e  T r a n s v e r s e  R a n g e s  (D2)  a s h e a r  s t r a i n  o f  a p p r o x i -  
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ma te ly  2 is n e e d e d  (Fig.  10). The  w i & h  p e r p e n d i c u l a r  to 
the  faul ts  of  the  D2 el l ipse  is a b o u t  90 km,  t he re fo re ,  
to ta l  lef t-sl ip faul t  d i sp l acemen t  should  be  nea r  180 km. 
In bo th  D2 and D4, the  San A n d r e a s  was used  as the  r igid 
r e fe rence  b o u n d a r y .  W e  assume tha t  in all doma ins  the  
faul ts  within m o v e d  s imul t aneous ly ,  t he r e fo re  we used  
the  s imu l t aneous  fault  modi f ica t ion  with  an i nc r emen t  
(a) of  10. 

F igure  11 summar i ze s  the  finite s t ra in  analysis  as g ray  
el l ipses.  Not ice  tha t ,  a l though  D 2 ro t a t ed  and Dt  d id  
not ,  the  two d o m a i n s  have  s imi lar  s t ra in  magn i tude s  and  
o r ien ta t ions .  F u r t h e r  south  on bo th  sides of  the  San 
A n d r e a s  in D 3 and D4, the  s t ra ins  seem to be  much  
lower .  T h e  el l ipse  l abe l ed  ' S A F  only '  is the  s t ra in  of  the  
reg ion  enc losed  by  the large  e l l ipse  due  to only  the  San 
A n d r e a s  Faul t .  T h e  large e l l ipse  is m e a n t  to inc lude  the  
en t i re  act ive p la te  b o u n d a r y  as ev idenced  by  the faul t ing 
shown in Fig.  11. T h r e e  e l l ipses  r e p r e s e n t  ' c o m p o s i t e '  
s t ra ins  found  by combin ing  domains .  A l t h o u g h  app ly ing  
the F S F S  m e t h o d  in this way  is less r igorous  than  as 
app l i ed  to c o h e r e n t  s t ructura l  d o m a i n s ,  the  resul ts  a re  
helpful  for  summar iz ing  reg iona l  s t rain.  

The  ca lcu la ted  m a x i m u m  pr inc ipa l  shor ten ing  direc-  
t ion due  to all of  the  faul ts  is o r i e n t e d  abou t  70 ° to  the  
s t r ike  of  the  San A n d r e a s  Faul t .  The  axes of  folds in the  
vicini ty of  the  San A n d r e a s  Fau l t  a re  v i r tua l ly  para l l e l  to 
the  fault  ( M o u n t  & Suppe  1987). The  ex is tence  of  two 
sets of  s t ra in  fea tu res ,  faul ts  and  folds,  with d i f ferent  
s t ra in  o r i en ta t ions  is a fu r the r  ind ica t ion  of  decoup l ing  
of  the  re la t ive  p la te  mot ion .  O n e  c o m p o n e n t  is low-drag  
s t r ike-s l ip  d i sp l acemen t  on the San A n d r e a s  and  adjac-  
en t  faults;  the  o t h e r  is r e l a t ed  to compres s ion  pe rpe n -  
d icular  to  the  San A n d r e a s  ( M o u n t  & Suppe  1987). 

C O N C L U S I O N S  

W e  have  d e v e l o p e d  a t echn ique  for  d e t e r m i n i n g  the  
finite s train of  a reg ion  due  to faul ts  wi th in  the  reg ion  
based  on  the  same  concep t s  as the  m o m e n t  t enso r  
summat ion .  F in i te  s t ra in  m a g n i t u d e ,  o r i en t a t i on  and 
b lock  ro ta t ion  can all be  ca lcu la t ed  with this m e t h o d .  
The  F S F S  m e t h o d  was app l i ed  to two syn the t ic  and  th ree  
real  wor ld  e x a m p l e s  to d e m o n s t r a t e  its uti l i ty.  A l l  the  
examples  were  two-d imens iona l  due  to  the  ava i lab le  
da t a  sets;  howeve r ,  the  m e t h o d  is not  l imi ted  to  two- 
d imens iona l  analysis .  

Because  fault  d i s p l a c e m e n t  is i nhe ren t ly  d iscont inu-  
ous  and  s t ra in  is an inhe ren t ly  con t inuous  concep t ,  it 
may  seem con t r ad i c to ry  to r e p r e s e n t  fault  d i sp l a c e me n t  
as s t rain.  H o w e v e r ,  the  FSFS  m e t h o d  p rov ides  a shor t -  
hand  to desc r ibe  the  change  of  shape  and  b lock  ro t a t ion  
of  a reg ion  due  to faul ts  within tha t  reg ion .  F o r  mos t  
fau l ted  areas ,  the  t r ad i t iona l  M T S  app l i ed  to faul t -s l ip  
da ta  ( Jamison  1989, M a r r e t t  & A l l m e n d i n g e r  1990) will 
cor rec t ly  ca lcula te  the  s t ra in  but  not  b lock  ro ta t ions .  
The  F S F S  m e t h o d  d e v e l o p e d  here  should  be  used  in 
fold and thrus t  bel ts ,  high s t ra in  reg ions  ad jacen t  to 
m a j o r  s t ruc tures  and to solve for  b lock  ro ta t ions  due  to 
faul t ing.  
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A P P E N D I X  

Representation of  fault-slip datum as two vectors 

Let an orthonormal basis be defined by north (~1), east (62) and 
down (~3). The relation between measured fault data and the unit 
vectors representing the fault normal and the direction of accumulated 
slip is given by: 

fi = - sin(6)sin(a)~ 1 + sin(6)cos(a)62 - cos(6)6s (A1) 

= cos(a)cos(fl)~l + sin(a)cos(fl)62 + sin(fl)~ 3 (A2) 

and 
= f i x  il, (A3)  

where o and 6 are the strike and dip of the fault plane (right-hand rule), 
respectively, and a and fl are the trend and plunge of the fault striae. 

FSFS analysis of fault-slip and rotation data from Ron et al. (1990) 

This analysis is necessarily approximate; nonetheless, it demon- 
strates an interesting application of the FSFS method. The map in fig. 
2(a) of Ron et al. (1990) shows a study area of elliptical shape. The 
major semi-axis (B1) is 12.3 kin, the trend is 60 ° and plunge, 0 °. The 
minor semi-axis (B3) is 7.7 km, the trend is 150 ° and plunge, 0 °. We 
chose a vertical intermediate semi-axis (B2) with a length of 5 km. The 
strike of the Dead Sea Transform in the area varies from 0 ° to 30°; we 
chose a rigid plane with strike and dip of 20 ° and 90 °, respectively. 
Table 1 of Ron et al. (1990) summarizes the fault data; the average 
orientation of fault planes in the youngest, intermediate and oldest 
fault sets are 331" 85°S, 295 ° 83°S, and 254 ° 89°N, respectively. 

For simplicity we assigned the same total displacement to each fault 
set and ran the FSFS method using the above data. Total displacement 
of 23 km on each set produced a total counterclockwise rotation of 69 °. 
This displacement corresponds to shear strains slightly greater than 1 
on each fault set. 


